The analysis, published this week in the online version of Nature Geoscience, has reportedly amassed the largest data set to date on greenhouse gas emissions from hydroelectric reservoirs. Prior studies based on more limited data cautioned that hydroelectric reservoirs could be a significant and large source of both carbon dioxide and methane to the atmosphere.
Through an analysis of 85 globally-distributed hydroelectric reservoirs, the authors revealed that these systems emit 48 million metric tons of carbon annually, a downgrade from earlier estimates of 321 million metric tons. Further putting things in perspective, hydroelectric reservoirs are responsible for less than 16% of the total carbon dioxide and methane emissions from all types of human-made reservoirs combined, says the analysis.
“Our analysis indicates that hydroelectric reservoirs are not major contributors to the greenhouse gas problem,” comments Dr. Jonathan Cole, a limnologist at the Cary Institute of Ecosystem Studies and one of the paper’s authors. “But there are some caveats. To date, only 17% of potential hydroelectric reservoir sites have been exploited, and impacts vary based on reservoir age, size, and location.”
The analysis says that emissions are the highest following reservoir construction, due to decomposing vegetation and soil organic matter. As reservoirs age, emissions decline, with cold-water systems stabilizing more rapidly than their warm-water counterparts.
Lead author MSc. Nathan Barros, of the Federal University of Juiz de Fora further explains: “The bottom line is that per unit of energy, hydroelectric generation produces much less carbon dioxide and methane emissions than previously thought, but impacts are not equal across all landscapes.”
The amount of greenhouse gases generated by hydroelectric reservoirs depends on where they are built, with the team’s analysis indicating that emissions are correlated with latitude and the amount of biomass in the watershed. Barros added: “Reservoirs in tropical locations, such as the Amazon, emit more methane and carbon throughout their lifecycles.”
The paper’s authors urge careful consideration of site location and design for future hydroelectric projects. “During the environmental impact phase, it should be a goal to minimize the amount of carbon dioxide and methane emitted per unit of energy generated,” Cole notes.
To truly tease apart the emissions generated by hydroelectricity, the authors also call for a study that assesses a site’s carbon budget before and after reservoir construction. Pre- and post flooding analysis would clarify the net carbon impact of hydroelectric reservoirs.
Contributors to the paper included Drs. Lars J. Tranvik, Yves T. Prairie, David Bastviken, Vera L. M. Huszar, Paul del Giorgio, and Fábio Roland.
The work was supported by grants from FURNAS Centrais Elétricas and from the Swedish Foundation for International Cooperation in Research and Higher Education (STINT).